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ABSTRACT

The equations of motion of compressible viscous and heat-conductive

fluids are investigated for initial boundary value problems on the half space

and on the exterior domain of any bounded region. The global solution in time

is proved to exist uniquely and approach the stationary state as t + g

provided the prescribed initial data and the external force are sufficiently

small.
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SIGNIFICANCE AND EXPLANATION

The smooth motion of compressible viscous and heat-conductive fluids is

described by a nonlinear system of five partial differential equations. The

first mathematical question for such a system is the existence and uniqueness

of the solution for the initial and boundary value problem. Since the local

existence in time of the unique solution is known, the main problem is the

existence of the global solution.

In this paper we show the existence and uniqueness of a global solution

in time and its decay to the stationary state as time tends to infinity for

the particular case of the initial-boundary value problem on the half space

and on the exterior domain of any bounded region, provided the initial data

and the external force are small. The analysis which uses the energy method

extends our previous works concerning the initial (boundary) value problems on

the whole space and on the interior domain (MRC Report #2194, 2237); some new

a priori estimates for the domains considered here are required.
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INITIAL BOUNDARY VALUE PROBLEMS FOR THE SQUATIONS OF NOTION

OF COPRZ SIBLE VISCOUS AND AT-CONDUCTZVI FLUIDS

Akitaka Hatsumura and Takaski Nishida

*1 *INTR•ODUCTION

The motion of viscous compressible fluids is described by the system of five equations

for the density p, the velocity u - (ulu
2
.u

3
) and the temperature 6:

P+ (PUJx - 0
pt

1 31_ (,, i uj + U uk 6ij} 4i t ie - 1,2,3,
.1) u u + 1u !u ) Pkt +x

t j SPe 1

where p is the pressure, u is the viscosity coefficient, a' is the second coefficient

of viscosity, K is the coefficient of heat conduction, c V  is the specific heat at

constant volume, all of which are known functions of p and and Y is the

dissipation functions

,. 2 (u, + u
k )2 + .s,(uk)2 "

We consider the initial boundary value problem of (1.1) in the region t ; 0, x e 2.

The boundary condition in supposed

(1.2) ujt0 >~ j ~ t 0

or

(1.3) u ~ u1 " 0, L Me 0, t >0

The initial condition is given by

(1.4) (pUO)(0,x) = ( 0 1U000)(), x e

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
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The local existence theorem for the initial boundary value problem (1.1)-(1.4) is proved by

Tani (10] under full generality. Here we want to solve the problem (1.1)-(1.4) globally in

time under the following assumptions.

3 3
A.I. The domain () is the half space R+ - {x e R , x3 > 0) or an exterior domain of any

bounded region with smooth boundary. Here we note that the initial (-boundary) value

problems on the whole space and on the interior domain are solved globally in time in [6],

(7) and [8).

A.2. Pp',K,p and cV are smooth functions of P,8 > 0, and Pic,,P.Pi),pe > 0,

' + 2 Ij ; 0.
34

A.3. The external force f is given by the potential O(X) e H ( ,

(1.5) fim -0 , i - 1,2,3, x e ,

where and in what follows we use the Sobolev space

H - {f e L2(), Dkf - {3of/axl Ox 2 x3  , l - k} e L2(), 1 C k 4 9)

with the norm Ofs, I f X 1DkfI dx) 2

A.4. The initial data are smooth functions close to a constant state (P,0,1), where

and i (also appeared in (1.2)) are any positive constantns, i.e.,

- p, u0 , 80 - 8 6 H 3() and

(1 .6)
p- u0  0 10"1'3 is small

A.5. The compatibility condition on the initial and boundary data is satisfied as follows:

u 0139 - 0, eOl Ian

(1.7) POxi + 1_ fi (u1  +u + Ulu k Si
P( ' P 0  0 ,."x ,x 0 o'IxI.,, x a

_0lPO)0 1 (( O ),x + T
PoCcv)o O,xj olc)o 0 0 xj -1 0

-2-



where we used the notation P. " P(O0'%0) etc. In the case of Neumann condition (1.3) for

6 we need necessary change of compatibility condition.

We use the following notations for the function spaces:

C (a): Banach space of bounded continuous function on U,

C [( = -f e C°(?), Dkf e CO(a), 1 4 k - 9),

C (tlt 2,B) = fu(t) i 1-times continuously differentiable function of

t e itI ,t2  with values in a Banach space B, where the norm is given by

max sup I(j ]ku(t, "),
O-k-Cl t 4t~t aOk(t1 tt2

L2(tt 2 M) - {u(t) : L2-function of t e [t11 t 2] with values in B, where the
t2 2 2_ 1/2

norm is given y f u(t,.),jdt)1  }.
t1

The stationary solution (p,u,O)(x) of (1.1)-(1.3) in a neighborhood of (P,0,6) in

H 2()
3 

has the form (cf. lemms 2.1)

p(x)p(,6
(1.8) J ....2....M..) dn + O(x) - 0, u- o, e-.

We can state the main

Theorem 1.1. Under the assumptions A.1 - A.5 there exists a constant C > 0 such that

if 1P 0 - U06 0 - 13 + 1#1 4 4 E

then the initial boundary value problem (1.1)-(1.4) has a unique solution (p,u,9)

globally in time and a unique stationary state (;,0,1) which satisfy

p - pe C°
0

,-;H
3 (0)) C

1 
(0,aH

2
())

(1.9)

u,O - 6 C
0
(0,-H

3
(Q)) CI (0,-H 1 (0))

and

P- - IcO( 0 as t •(1.10) I- p,u,e - (t)1  0)

The theorem is proved by the energy method which is similar to [6), [7], t8], but it

requires the estimates valid in the half space and in the exterior domain. We note that

the solution decays as in (1.10), but the decay rate is not known, cf. [61, (71, (8]. In

-3-



.the following we only mention the argufents for the Dirichlet boundary condition (1.2),

becauae the Neumann boundary condition (1.3) for 6 can be treated similarly.

-4-



12. SMTIOMRYl SOLUTION

Let us write the equations and conditions for the stationary solution (p'u, )

(2.1) (Pu)x 0

(2.2) pj + P-L+ -P ;(, + +6x.0 .,

(2.3) j r x

where p(pO) etc. The stationery problem (2.1)-(2.4) has a unique solution as

Lema 2.1. Under the assumptions A.1 -A.3 there exist positive constant C and C such
that if 10l1 A 4° 9, - 3 or 4, the problem (2.1)-(2.4) has a unique solution (;(x),0,b)

in a mll neigborhood of (;,0,1) in (2)3 satisfying

(2.5) I-l 4 CIt1I, I - 3 or 4 respectively

where ;(x) is determined by (1.8), i.e.,

(2.6) 1 dv + OW 0

Proof. Since we consider a mall neighborhood of (P,0,9) in (H2 )3 , by Sobolev's leuma

we may suppose <- , I, I - l1 < min( .,). Then we can estimate the equalities:
2

2 x

(2.7) f (2.21' Kud. 0

k 512.3) x (- )dx 0

where (2.11, [2.21i and (2.31 denote the terms on the left hand side of (2.1), (2.2) and

-5-



(2.3) reapectively. Take the smu of (2.7) and integrate it by parts Using the mean value

theorem and le 4.1. We obtain the inequallty:

,Du, 2 + D1l2 < CO{,lD + 0 I I;- "61Co

+18- Ol}2lul + IDOl)

Therefore if IDl, 1
1
1, l0 - !I 2  in small, we can conclude

(2.8) . - 0, - 6

If we substitute (2.8) in (2.2), we have

Ppp (n, 0{j . + I}x-

which implies (2.6).

-6-



3. LOCAL AND GLOBAL EXISTENCE

Let us rewrite the problem (1.1), (1.2) by the change of variables

(pu,O) i-* (p + ;,u,B + 1) using (2.6) as follows:

P +uP + (p + 
;)u + - 0

t ji x ± ki
u +uju - { (u +u + luk ) +
t x - x %

(3.1)
Pp p8  p(P..+,.+

+..p P + +( -11 I  "
pp °i pp i (p )p(,U)

u:JexjIx (P + P)P)uP1 (xlx

(8 + )p, j I
t + + - ((KO +yJ.(t+ x xx1x;1

j (P + P)C~ 1  (AP)Cv i

(3.2) (UO) I (u,e) " 0

(3.3) (0,ue)(O,x) (P 0 ,u 0 o)(X)

Further we rewrite the problem (3.1)-(3.3) as follows:

(3.4)0 LO(P,u) N Pt + ujPx + ;,.J fO

(3.4)1 Li(PuO) u - u - (y + ix)uj + p + p f i, 1 1,2,3
xx x 2.

(3.4)4 L 4(u,e) 0 - Ke + p u -

(uO) I - (u,8) I -0

(3.5)
(Pue)(0) - ( 0,u 0 1 80 )

where we denote the constant for the function 9 of p and 6 by g - g(pl), and also

U U/, U" MO, K - KI V, - ' - P and p3 - The terms on

-7-
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the right hand aide of equations (3.4) are nonlinear nd have the form:

0 - jf (PIUS) (G - 0 - k pu -P

j j

fi (P. ,e) -u ux + ( U.JL iaxu +
j p~ + p

+ ~ ~ ~ ;.Uj + i u + u

(3.6) + V u k6j + - p)e p

p(p + Pe + 0
+( p + ;, I#x i - 1,2,3

(0 + 0)p (o V i

(0 +uO) -uj ++(C - + T)+ jP (p + 0)c7  xxP+ )v

(g 4 u- in(p,l6) -for any g e H 2  Sqg2 4

Then the solution of (3.1)-(3.3) is sought in the set of functins X(Ow:E) for some

g4gtwhere for O 4t1 A( t <f, we define

1Cti 1 t ;Z) -(Co,u,O)

p e Mtt 2 iH 
3 ), Dp e L 2 (tt 2 iH 2 )

te Ct ,t 2iH 2 ) nL 2Ctt 2 

3 1 3

ut ,ot e C(t1 ,t 2 iH L 2 (t 1 t 2 ;H 
2  and N(t,, t 2  4 E)

-8-



where

2 2 2 123+ pt(t) 2+ lutV ) +

(3.8)
t
2 2 ~ ~ + 2 3 t.et(s ) 2

t1

Here and in what follows we do not write 0 in H (0) and L2(C).

We will obtain the global solution by a combination of a local existence theorem and

some a priori estimates for the solution in X, namely that for the norm N.

Proposition 3.1. (local existence)

Suppose the problem (3.1)-(3.3) has a unique solution (P,u,S) e X(O,hE ) for some

h ) 0 and consider the problem (3.1)-(3.3) for t ) h. Then there exist positive

constants 1,C0 and C IT +?C 2 zO) independent of h such that if N(h,h).contatsT•0 n 0( 0 0 0O

1414 c 0o the problem has a unique solution

(p,uO) e X(h,h + T ; C0 (h,h))

The proof is the same as that for the interior problem in (8] and is omitted. Although the

local existence theorem by Tani (101 is more general, we need it in the form of Proposition

3.1 to extend the solution globally in time by use of L2  energy method.

Proixeition 3.2. (a priori estimates)

Suppose the problem (3.1)-(3.3) has a solution (p,u,O) e x(0,hjE 0 ) for given

h > 0. Then there exist positive constants £I and CI  (el 4 C0, 'ICI 4 E0 ) which are

independent of h such that if N(0,h), 1614 4 elf it holds

N(0,h) f C1N(0,0)

If Proposition 3.1 and 3.2 are known, the global existence of unique solution can be

proved as follows: Choose the initial data (P0,u000) and the potential function 4 so

small that it holds

N(0,0) 4 ,infcI/cO1 /C/ C2 j and 11 1 e

Then Proposition 3.1 with h - 0 gives a local solution (p,u,O) e X(0,rTC 0N(0,0)). Since

C0N(0,0) C CI C £0, Proposition 3.2 with h - T implies N(0,T) 4 CIN(0,0). Then

-9-
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7i ..

Proposition 3.1 with h = T implies the ekistence of solution

(p,u,e) e x(r,2r Nr T),rl), e x(o,2TIV'1 + c o

Hance, since +
7

C N(0,T) 4C 1 /1 + 2N(0,0) C e1, Proposition 3.2 with h = 2T
Hence0 sic 01+CO

gives N(0,2T) 4 C 1N(0,0), and Proposition 3.1 with h = 2T gives

12

(P,u,O) e X(2T,3T;CoN(2",2T)), e X(0,3; /-I. CO (02r)

Repetition of this process yields

Proposition 3.3. (global existence)

There exist positive constants C and C(C 4 E 0 ) such that if N(0,0), 1014 C C,

then the initial boundary value problem (3.1)-(3.3) has a unique solution

(p,u,O) e x(0,f;CN(0,0))

-10-



I. -

14. A PRIORI ESTIMATES

First we recall some inequalities of Sobolev type.

Lemma 4.1.

(i) Let Q be any domain with smooth boundary. It holds

Iflc 4 CifH2 , 0 4 o < /2,

(4.1)
IflL (SO IfHI 1 2 4 p e 6

3 3(ii) Let U be the whole space a , the half space R+3, or the exterior domain of

a bounded region with smooth boundary. It holds

Ifi clfIfL6(Q )  CIDfIL 2(

(4.2)
IfL2 ( CI~fL 2 (l()

where Q' is any bounded subregion of 0.

Proof. See for example [3], [4].

Next we note some estimates of elliptic system of equations for our domain, when we

regard equation (3.4i, i = 1,...,4, as elliptic with respect to x variables, i.e.,

;nx + (; + ;,)U . U + - fi 1,2,3
iU x~ x x t 1) +~D p2 x~ ,.

(4.3) ;axx e + p . f4
x132 = p3U -

Lemma 4.2. Let Q be the half space or any exterior domain. We have for k = 2,3

(4.4) IDkul 4 C(IUtk-2 + ID(P(C)lk-2 + #f k-2 
+ 

#US)

(4.5) IDke1 4 C(10tgk-2 + IDUlk-2 + Iflk-2 + ID01} .

The first estimate is well known, e.g. [1). The last L2  norm is contained on the right

hand side because of the unboundedness of our domain. The second one is given in [5]. It

contains the L2  norm of the first derivative as the last term on the right hand side and

is stronger than that containing the L2  norm of the function itself such as (4.4).

-11-



The last estimate for an elliptic system concerns Stokes equation in 0 which comes

from ( 3 . 4 )i, i - 0,...,4.

Puxj  h,

(4.6) -;u1 j =i P i - 1,2,3

U(, - a, u . - O

Lemma 4.3. For k - 2,3,4 it holds

.. ) 2 + k-1P2 2 + I2 +  
2+ u'2

k-1 k-2 Hk-1/2(3)

where the last term on 'he right hand side is necessary in the case of exterior domain.

Proof. In the case of half space 0 - R lemma is proved by Solonnikov (93 and Cattabriga

[23, where the definition of the space Hk-1/
2 (M) is also given. In the case of exterior

domains Finn (31 and Heywod (43 obtain lema provided h = 0. Thus we only need a slight

improvement for h * 0. Let us extend the function h e H (0) to a function e H I(R3)

with the estimate

e 13 1 lIha(3) a C O~()•

Then we approximate h by H1 
functions hn with compact support, i.e.,

h *h in. H I(a3), as n "

Thus we can define the function

1 h n(y)n(x) f -1 ---Y
p 3 I Y' , d y

It is well known by use of Fourier transform

ID 2#nIH(R3) I( hnIH 1(23)

Thus we have

-12-



ID
2  

Dl - O I' Clh Ih 1

H10 2 Nx

where 0' is any bounded subdomain of 0 (cf. (4.2)). Since C is independent of n,

as the limit of n.. we have

ID 2 #1 1 IDO L2 (ClIhI 1

Now we can put

u- V-v and q - p+ h/pl;

which satiefy

div v - 0

and reduce. to the above case. In fact we have

IDVI L 2 IDulL2( ) + ID 21 L IDUIL2( ) + CIh( )

and

1 '/2 ag l* .I (9 Ci .2
IV a, H/2 an 01-voi k 830H 2(ag) < (O0' 2W) 4CChI01 (a)

where the boundary of 01 contains 30.

Now we begin to obtain the energy estimate for solution of equation (3.4),

i - 0....,4, with (3.5).

Lema 4.4. We have for I - 0 and I

r t

(4.8)

SC{(IOt (U,9)(0, + I 1 I + ;fI da)
0

where

-13-



A0 - Pa + 2 Of d,
p 

P3

(4.9) A, - f LO(f' - d . 4 if + 2ef 4 dx
t t t p 3  t

= + t f t t0 -j
dt Pt Px X

We have also for k 0 and 1

IDk(CU,e)(t)l2 + k+1 2
+ I t (0,u, B) (s) 1ds

0

t tt

kc 2 k 2O - * k 2

(4.10) < COIDO t(u,e,(0)12 + It;0(0,12 + Irk0(t)lI

+ f ID30 k(u,e)Cs)I 13 k(t0 ujP )2+I 3t(6)I2 do)
a t t t

Proof. Compute the integral

t Pp 4 f2

f f - f'° ) + ui(Li - fi) + - (L2 -O(L dxd " 0
0 aPP

Integration by parts using the boundary condition gives

f 2 +IP2 2 t f(; + '(u
1  

2 + 2I)O1 ddt

!. ~2 12+ ~22X + P2 .2 *+x'

Ip 2 2 p2  t
l2+ u 12L 2 2d A dt,2 ; 0 p3  0

where A0  is defined by (4.9). If we use the notation dp/dt in (4.9), we can obtain

(4.8), 9 = 0 from this equality. The time derivative can be treated similarly, because

it has the same boundary conditions. Next compute the integral

f f0 t
(L  - f 0) + u i(L i - fi ) + 8t(L 4 f4 )dxdt- 0

0 al

Integration by parts gives by use of Schwarz inequality

-14-



12 + 2UDo12 + ft 2 + 1'f-o I P 4. 1ol2 + . 0o 2ddt

;ID. ~e~sl + 12 d + -

j 00w

x I 2 j 2 0aP
12 +A~0  1 + u' 0  )2 - 120  + PIPOU dx

KID0 0,x~

t 24+ Ij2
+ C f f ID(U,6)Cs)I fidxdt

-~ ~ 0a 23

where f C - d PXf ,f ,f , ,f 4). If ye use Schwarz inequality for the term Pu , we

33
obtain (4.10), 1 - 0. The estimate (4.10), 1 - I is obtained similarly.

In the following we first treat the case of half space 2 - 3 which is simpler to

explain the way of obtaining estimates than that for exterior domains treated later.

Since the tangential derivatives of the solution of (3.4) satisfy the same boundary

conditions (3.5), we can obtain the estimates for these similarly to the above lema 4.4.

Let us denote the tangential derivatives by a - (3 ,3 x2) and integrate the equality for

each k - 1,2,3 by use of integration by parts

- CL0 - f0)ak + kLi - fi)akui 0

Thus we have

Lemma 4.5. For k - 1,2,3

lak (pu)(t)12 + f I *DBu)1 2 + *3k " 2 (s)
2ds

0 dt

(4.11)

CC(IaklPul(O) 2 + f t akfOlC)1 2 + *3k-lf()12 + IA dk+1lds)
o

where

(4.12) Ak f k p a kif0 - t1OP )dx for each k - 1,2,3

Then we have to obtain the estimates for the normal derivatives of solution. To do

that we use the following equations from (3.4).

-15-
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3 jx3 x3

(4.13)

u 3 _ + I + pP + P2 3
3x)x

3  x3

If we eliminate the term u
3  

from these, we havex~x

-,dt-x + ut 2 + fo .,. f,
p 3 3 x3

(4.14)

+ ;U3l + 3xl 2
+M u +u )+ja'+u + )

IX1 x2 2  x1  2 x3

where we note the second derivatives of u at the last two terms on the right hand side

contain one tangential derivative. Multiply (4.14) by Px3 and (dP/dt) respectivelyx3

and integrate them respectively. We obtain after integration by parts

A t

2ux + " fx + ~ dxdt

2P 3 0 3

f 2M p' 2 t 2pz + ~a(U1
- ,, x + ff (- uP )P dxdt

2P 3 0 2P j 3 x3 j x3

+ f( f-u 3 - pO + + + + u 2  )) +

0 (2x3  xIx x2 x2  xIx 3  x 2 x 3  x3

+ :+ P+ fO + 3xdxdt

p x3 3

/t
f - 2 dxdt dCDt(0) 12 + +

2 3 0,00 x3 0

+ f lut2 + ID3uI
2 + IDel

2 + IDf 0 I2 + If
3 12 dm

0

and

-16-



f f 2 _ 11 C1(# ). 12a. t + 1 - i1 3 :
t a 2 P'

0 3 3

0 3 3 3

t f 2 + ,3 +;(3 + X tu

+ ft - 3P 3

0 X3 3X 11 2 1 3 + 2'3

+2;4 + fO 0 + f 3 )dxftt
x 3

2U + is' j g)X dxd + C I IDPO) 2 + f in 0It
2P 0 3 a

t Out2 +  2 IDOl2 + IDOUI2 + IDf0 12 + If 3 12dxdtj
0

respectively. Thus we have obtained the following

Ledma 4.6. For k + I - 0,1,2 it holds

k +1 2 . +,, , l. , .I + I I ,
I 3 0~) f 33 atsI

.CjIDP(0)l 2 + I gk1Dug2 + ilk au 12

k+ 0
+. ID(u,S)(s)I 2 . I f 0 4.2 IfI 2 I e

k4.L k4.L4. k+& +1k, Ot

where

(4.1G) tm A I{kal(jg) _ gkllpt jg3 xd
3 tx3 3 3 3

and here the summation is not taken for k and A.

Proof. For k + 9. ,- 1 and 2 we differentiate the equation (4.14) by k; 3 and multiply

it by a k a P and kat4. AE respectively. Integration by parts gives (4.15) and (4.16)
3 t

in this case similarly to that for k - L - 0.

Lest we use line 4.3 for Stokes equation (4.6) with u 0, where h and qi

have the following explicit forms.

-17-
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h 
0 

-_
dt

(4.17)

I ± + + P h - P2x + f * - 1,2,3.
p ±

Lemma 4.7. ror k + 1 0,1,2 we have

ID2+L a kul + IDl+k l

(4.18)

IaC{IU.jj+'t + IDOl + If 0 1+ If I

Now we can combine the above lemmas 4.1-4.7 to obtain necessary a priori estimates.

First we obtain the H2  version of norm N(Ort), i.e.,

IPuOtI2 +IM 2 + lut, st(t ) l 2lp,u,O(t) 12 + IPt(t)l + l1  9(i
2 ttI

t 2 , , 2 ,DLu.S,.), 2 + Il (.),2d
+ j Up (u),DP(s)I I + -'Y )I+ DOW dt 2

0
(4.19)

CjIp,u,e(O)I 2 + cup (if0 - ijl 2 a)1 2

tOst j I

+ f0 2 + Of 012 + f 2+ ~IujP12 3 tld+ ,f ° ,f 2 , t ,m ,, , u , I 1 ,1 I ~ c ~ L ~ k
0 k k0 k+j0

It is proved by fifteen steps as follows:

(i) By lemma 4.4, 1 - 0, we have

Io'ue(t+)1 2 +o f ID(U'e)(6)1 2 +  (, (s12ds
0 d

(4.20)

4 C Ip,U,o(0)1 2 + f if0 ()5 2 + IJA0ds
0

(ii) By lema 4.4, k - 0, and (4.20) we have

ID(u,e) t) 2 + f Up 8t(s) 2 d

0
(4.21)

4 ..... + C{ID(u, 8) (0)12 + IP(O)1 2 + f IF(@) 12do,
0
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where ..... means the terms already appeared on the right hand side of inequalities (4.201-

(4.32), especially (4.20) for (4.21).

(iii) By lemma 4.4. 1 = 1, we have

IPtutet(t) 2 
+ ID(ut,)()l1 + (s)i2 do

0

(4.22)

4 C{Ip tut. q(0)1
2 

+ t IfO(s)l
2  Ids+ t . 1 + lA, 1  •

0

(iv) By lemma 4.2 for 0 and by (4.20)-(4.22) we have

(4.23) ID2(t)1
2 + f D 2 ls)II2 ds 4 ..... . C(If

4
(t)1

2 + ft If4(),ll*)
0 0

(v) We have the estimate of tangential derivatives of p by lemma 4.5, k - 1,

13p(t)I + f tOau(s)1 2 + 3 )~ 2 do
0 d

(4.24)

C ..... + |o(O)i2 + C f oaf
0
(S) l2 + If(s)l 2 + IA2 Ids

0

(vi) The estimate of normal derivative for p and d12 follows from lema 4.6,
dt

k + A - 0 and from (4.24), (4.21) and (4.20)

i3t)2 Ia3pls}12 I - (l2

133 pWt)2+ f 0+ a At (6)Ido

(4.25)

4 ..... . C113 P(O) 2 + f 2 
0  

f2 i,2 + is iol

3 1 4.1 0,0ts

(vii) Then we have the second derivative of u by lama 4.2 for u and k - 2, and

by (4.19), (4.21), (4.22), (4.24), (4.25).

2 22
(4.26) ID u(t)I C ..... . Clf(t)1

2
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(viii) Further since 6 e y(0,to i ), we have by 1emma 4.7, k + 1 - 0 and by

(4.21), (4.20), (4.24) and (4.25)

(4.27) t ID2ul8) 1 2 + IDP()1 2 dS 4 ..... . S If012 + If 12 ds
0 0 I

(ix) By lemma 4.2 for 8, k = 3 and by (4.27), (4.21) and (4.22) we have

(4.28) f 1D3 9(,), 2d" 4 ..... f I1f 4 (,), d
0 0

(x) By la 4.5. k - 2 we have

132pt)1 2 + f ID92 ul()12 + 1 2 Ae (s),2d3

0 dt

(4.29)

C C1I 2 (pn)(O)l2 + f1 1 2 fO(a) 2 + I f(8)12 + .A3 Ids)
0

(xi) By lma 4.6, k - 1, i - 0 and by (4.29), (4.22) we have

13a3pt)1
2 + f 133 P()I 2 + 133 A2 (*)12ds

0 3 dt

(4.30)
. ..... .+ c{3 3 p(0)1 2 + f IfO(s)12 + Iff2 + 1,0Ids)

30 2 1 B1 ,0 5

00

(xiii) By laa 4.6, k 0, - 1 and by (4.31), (4.22) we have

t -

(4.32) 13 2P ) ) 2 + f *3il2 )52 + l2 (*)1a 4. C tp()12 + fIn t ai
0 3dt 2.0

-20-

........



W6

(xiv) By lema 4.7, k * O. A 1 and by (4.29)# (4.30), (4.32) and (4.22) we have

t

(4.33) J *D3 u(8)1 2 + RD2 p(s)1 2 d 4  ......
0

(xv) Then by the equation (3.4)

2 t 2 2+ft A

(4.34) Ipt(t)I + I OP 4 . + - p . . f f - .Jp (s)I 2 da
1 0 P 0 j

Thus it we atm (4.20)-(4.34), we arrive at the H2 energy estimate (4.19).

To elevate the differentiability once to obtain the estimate of norm Y(O,t) we can

repeat the above argument beginning from 1emma 4.4, k - I and by use of lemoa 4.2,

k - 3, Iowa 4.5, k - 3, loom 4.6, k + L - 2 and lemma 4.7, k + I - 2. Therefore

we arrive at the estimate for N(0.t).

UOt)
2 a IpIu,(tO)2 + ipt(t)I2 + ht Ot(t)12

t12 .+,% . 9,() 2 + 0( , I f)( )12dt

+ f IPt',Dp(II) I O )I2 + tDtu 2)(s)
0

(4.35) 4 c{(IP.,.(o), 1 + SUp I f0 - gip (@)1 2,()N2

3 0Ift x 2

+ t *f0l(u)I2 + If(s)12 + if(0) + .. Lj 1 i2 + J *2

f3 2 ut' X3ID tx20

4 2
+ I'kI + I 1k, *Ids)

k'0 k+110

Last we have to shoy
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I.

ZGea 4.8.

sup (f° -0 ,up. (s°12 .,f(s)12 + f )2
04sft X 0

(4.36) + I1f
0 - ) 2 + If (8)12 + IF(s)I 2  4 2 Id

j t t10 k+b-0

C C 2(Nt) + I1 4 )N
2
CO,t)

It is proved by use of lema 4.1 and integration by parts. We show only the term A. and

omLt the proof of the other terms which can be treated similarly. Let us recall (4.9) and

compute the following

fP(f - UI )dx - If {((i - ;)uj - PU,) dx - If P. -)uj -91dxt

9 , f ,f ( 2 - )2 ,12 1/2 2 ( o2Il2 x 1/21

IDPI{Ip P) p ul +x +p (u p uI .

4 DP6 ;IL NOL + OL NNL
, op{, Pl3 lL6 Il3 ll6}

4 CIDPIIDuI{11 3 + 19I1 }  C N(Ot)
2
(IO 3 + N(0,t)}

p+ p + I p~~ ij

C + -(( ; - " 

I 

U

if Iu -ax i) Ij ( - +j i

f u- L I,2 + *C'-+ I )U E IuEx L + L

+9 P P+9 3 6G

4 C N(l0,t)2 (141 3 + N(Ot)).

The remaining terms in A0 can be treated in the same way as above.

-22-
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Finally let us turn to the case of exterior domains. In this case, since we cannot

generally designate a coordinate system all over 0 the directions of which are consistent

with the normal and tangential directions on the boundary 00 as in the case of half

space, we have to modify the lemmas 4.5 through 4.7. To do that we shall separate the

estimates of the solution into that over the region away from the boundary M and that

near the boundary ag. Let x (x) be any fixed cut-off function in C (0) such that

support X C 0 and 1 B I outside of a bounded region 0'. Then we have the following

as the estimate on the region away from the boundary.

Lema 4.9. For k = 1,2,3, it holds that

IXODkp(t) I2 + I , 1D s 2ds
0

(4.37) ( CIDkP(O)
2 + IDk-

1 u(0)*
2 + ID ki Cut) 2

+ 
f  If 0 

" Px k - 1 
+ Ifl k-1 + ID(u, )k i dj)

0

IXD (.U(tl +I l +1 U(1 I 'f 2 +. ND f 4 a)20 d

(4.38) < C{tDk(P,u)(0)I
2 + ,Dk'1fl

2 + IDkf0,
2

0

+ IXOk12 + ID(u,8)3 2 + I I+ 1 ds'k-1 AI+1d,

where

-f L' X'(DkP)D'(fo - d~ )dxAk+l Q OP

and here the summation is not taken for k.

Proof. Compute the integral

0 20 0 2i

0 a X1 M - )x i , PX + (L - f )P dxds - 0.
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After integration by parts, we have

2u.; 2 2 2 1 + f pX IDPI d2

0 21) 0 0

0 ajj i l' i xjPi+i fP i

2 i 2j j 0 + -+
P 0P~, + (2 X u + )V )(Up -t f u)dx + Ado,2 i'.i Si o j O

Since the support of DX0 is contained in 1', we can make use of (4.2) and consequently

Schvarz inequality gives (4.37), k - 1. The other cases k - 2,3, are obtained

similarly. To prove (4.38), compute the integral

ft f PI

X0- (DO)D(L - f0 ) + (D )D(, 1 
- fi )xds" 0

0 p

Integration by parts gives

) = - D0P1+ id + + 1tU Y 4ID uI2 + )60 1 +. P')IDu x I dxds
a p 0 00a

f 2
t X P2(Du')DOe+ 2-, 2 (2)o

0 C P ,,iP

2fiui --i 2 . f uX dx + Alds2 ,N) xoI N x j x -i i  x

which implies (4.38), k - I after using Schwarz inequality. The cases k = 2,3 are

obtained similarly.

Next let us establish the estimates near the boundary. To do that we choose a finite

nusber of bounded open sets i N in a such that

u 0 an,
:1

and in each set 01 we choose local coordinates (###,r) as follows

-24-



r .......... .. .. _ ,. . ...... .. _

(±) the boundary 0j n 3f is the image of smooth functions y = y (*,*) satisfying

(ex., take the local geodesic polar coordinate)

(4.39) Iy*l - 1, y~y - 0 . IY4 P 0

where 4 is some positive constant independent of j -

(ii) any x in 0j is represented by

(4.40) x . x l (*,r) - rn() + y

where n(, ) represents the external unit normal vector at the point of the boundary

coordinated (#,#). more and in what follows we omit the suffix J for simplicity. Let

us define the unit vector* e I  and 02  by e y and e -I Y./Iv . Then Prenet-

Serrot's formula gives that there exist smooth functions (sIo y'",O'. ') of (4, )

satisfying

a( OL)i (0 -Y1 -W0 a 0 *-2
n ft 0 nO0s' i) (d)±

An elementary calculation shows that the Jacobian J of the transformatin (4.40) is given

by

(4.41) j - Ix x xl -ly~l + (aly*l + 0')r + (a 0' - P')r 2

By (4.41) we can see the transformation 14.40) is regular choosing r small if needed.

Therefore the functions (*,#,r) (Xi) make sense and is calculated as

(x. I (Ai +Si)
- r (s1 x~ A 1 +S 2)

(4.42) (x x)i X  (Ce1 + DoL)

where A - lr*l + 0'r, 8 - -ra', C - -Or, D I + or and J - AD - BC > 0. Hence

(4.42) implies

-25-
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i + Bi 3 Ci + Do) + ±
X e 1  2 1  2  n

Thus in each 0 we can rewrite the equations (3.4) i). 0  in the local coordinates
j i-0

(*,#,r) as follows:

"L0 a+ M i+ Bi. + (Cel + be2)u +  .Ju)fdt J 1 2 1 2 r

L= ut + M (1A 2 + B )u + 2AC + BD)u + (C2 + D )u + Jlu ) +t 2 rr

+ first order terms of u and 0

+ 1- (Ali + Be2 I - + p1 0J)+ (Cei + Do') ( A + p )
+ p , + + + W f0 -f

P dt 1r x

where we note that J - (AC + BD) 2 
- (A

2 + B2
)(C

2 + D 2
). Let us denote the tangential

derivatives by a 0#83 as before and let _x(1 C j < N) be any fixed cut-off

function in C(V ). Estimating the integral for k - 1,2,3

t 2 P l k 0 2 k iI Xj - 0kp)klLO - fO) + S(Okui)akLi - f1 ) J d#d#drds - 0

0 1 p

in the similar way as in lemmas 4.5 and 4.9, we can get

Lama 4.10. For any positive c and k - 1,2,3, it holds that

I c Xk(Pu)(t)l2 + f I Dku(s)12 + Xa 12 (.),2d.

0 
dt

< COIx ak(pU)(o) 1
2 + f , CIDPI 1  (1 + 71)ID(uO)_1

2

0 k-k

+ If fIk 1 + IA ,k+1 ids)

where Xaka f 0  
)dx, and here the summation is not taken for k.

whr j,k + 1 0 i

Zn order to estimate the normal derivatives we make use of the equation

a (L0  fO) -0 and n (Li fi) -0 which have the form".t r

:i -26-



+ + Bi)i + (Ce + Do )u i + Jn iu
1

dt r 1 2 r* +  1 2 r# rr

+ first order terms of u - f 0
r

(4.43) n Ut + {(A2 + B )n U + 2+AC + BD)u1  + (C
2 

+ D )n U + J n u
t 2 "'rr

+ first order terms of u and 0

0+ + )A, 0
+ - (-~ + V'r -=

P d 
r

iit
Eliminating n u from (4.43), we getrr

21 dp ~ ii 1 2 2. ii ii
2 - dt)r + p P+ 24A + BD)n u +

(4.44) (C2 + D2 )n u 3(Ae+ i )Ui _ J(C .+De )u i } +
2 24 1 2 r#

+ Be u3 + M

+ first order terms of u and 8 + n f + f
- r

If we apply a a (k + I - 0,1,2) to (4.44), multiply it by and

and integrate them respectively in the similar way as in lemmas 4.6 and 4.9, we can have

Lemma 4.11. For k + A - 0,1,2 it holds that

IX a ka 1+1 t)I 2 + ft1 xi 3k3+1 p(a) 12 + I 2aa+l dp)(.)I12 d.
td

, (C(I D r2 + f t ),ak+l a . 1 2 + aI 1 2 +
0 r t

+l2 +1-012 +Ifli2 + IB Ids)iID(u'S)I12 £ + f k + 
+  

d}

where
w h rf 2 k + ( e a k a + l ) a k a t + P d x

Sj,k,X - lj(akar 1(t) " r t r

and here the summation is not taken for k and t.
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Last we have to get a lmma corresponding to lema 4.7. evidently the statement of

lemma 4.7, k + I - 0 holds also for the case of exterior domains, if we add the term

IDul on the right hand side of the inequality, (cf. leama 4.3). Kext operating Xi ,

k - 1,2 to Stokes equation (4.6) with (4.17) and u1  - 0, we have

S .i) x jakf0 3  +

~~xj iX01 + Pi i Xi) 3 ~xaut -P 2 xiae' + P1 X. ep - XjXX'a

(4.45)

3 x+ X3 fi ik .L±.e I~ + P + I' a3 kf
-tp p i

-au. 0

Thus we can apply lama 4.3 to (4.45) and consequently we have

Lama 4.12. For I - 0,1,2, it holds that

2+1 1++11
ID2+tl + I I (<C{Iutl + 4 + + f0 1l~ flI + IDcu,e I)

and for k - 1,2, 1 + k - 1,2, it holds that

IX D2+13ku + I Dl+1akpI

4 C(u tlk- + Xak AE + If 0 1+k+ + IfIk'£ + IDPI ID(u, 0)Ik+ }

combining the above lemmas 4.1-4.4 and 4.9-4.12 in the similar way as in (i)-(xv) for

the half space, we can get the exactly same inequality (4.35) and the same lemma 4.9 if

only replacing

4 2

k-O k+1-0

4 N 4 2
by JAI + 1A 1 .1 j IAjI+ I fI I A ,Ic +- IB:IS k110 1 k-2 k J-1 k-2 rk k+?PO ,~k,

Thus the proof of Theorem 1.1 is completed.
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